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Exposure of cellular systems to the human
carcinogen chromate [Cr(VI)] results in a
wide variety of DNA lesions. Some of the
lesions formed from chromate treatment are
strand breaks, nucleic acid base modifica-
tions, DNA interstrand and intrastrand cross-
links, and DNA–protein cross-links (1–4).
Although these lesions have been demon-
strated in a variety of cellular and noncellular
systems, little is known about the fundamen-
tal mechanism of interaction between chro-
mate and DNA that give rise to the specific
lesions formed from this reaction. With few
exceptions (5), biomarkers corresponding to
specific lesions derived from chromate expo-
sure have not been adequately described. 

Chromate is unidirectionally accumulated
into cells by active transport through anion
channels on the basis of its structural similar-
ity to sulfate and phosphate (6). Once inter-
nalized, chromate is reduced by endogenous
cellular reductants to form a variety of poten-
tial DNA-damaging species, including the
highly reactive Cr(V) oxidation state of the
metal and oxygen-, carbon-, or sulfur-cen-
tered radical species (7). The final stable state
of chromium intracellularly is Cr(III), and
this oxidation state may also play a role in the
DNA damage associated with the metal.

A confounding factor in the determina-
tion of a mechanism(s) of DNA damage by
chromate is the large number of potential cel-
lular reductants, the associated myriad oxidiz-
ing species formed during the reduction

process, and the variety of lesions observed
upon cellular treatment with this metal. 

The endogenous reductant responsible for
activation of chromate toward DNA damage
in cellular systems continues to be a con-
tentious issue. Various cellular reductants such
as glutathione, ascorbate, NADPH and cys-
teine have all been observed to reduce chro-
mate in vitro and in vivo (8–10). These
reduction pathways form the highly reactive
Cr(V) oxidation state, although many also
form radical species. It is the confounding co-
generation of radical species that has led to the
different mechanistic descriptions for DNA
damage by chromate. However, it has recently
been shown that many types of DNA damage
and markers of oxidative stress can also be
formed through a direct oxidation mechanism
involving transient high-valent oxidation
states of chromium such as Cr(V) (11,12). 

A broad mechanistic description of DNA
damage from chromate exposure has postu-
lated a bifurcated pathway whereby various
DNA-damaging species result from either an
oxidative pathway or a metal-binding path-
way. The oxidative pathway would account
for the frank strand breaks, abasic sites, and
base modifications observed with this car-
cinogen, whereas the metal-binding pathway
would account for the interstrand and intra-
strand cross-linking and the DNA–protein
cross-linking observed for chromate. 

Our interest has focused primarily on
the oxidative pathway of DNA damage by

chromate. Cellular data have implied that this
pathway is a significant contributor to the
overall mutagenic and carcinogenic potential
of this metal (13). Specifically, the reaction of
chromium with the nucleic acid base guanine
is of interest because of the number of studies
that have indicated a preference for high-
valent chromium to react at this site (14–16). 

In this study, we examined the base-speci-
ficity of oxidation of DNA when reacted with
a model high-valent chromium(V) complex
and have identified candidate lesions formed
from this reaction. A profound specificity of
oxidation toward guanine residues within the
DNA strand was observed. The guanine-
based lesions of guanidinohydantoin (GH)
and spiroiminodihydantoin (SH) were identi-
fied when the reactions were carried out using
a 7,8-dihydro-8-oxo-2´-deoxyguanosine
(8-oxo-G)–containing oligonucleotide. The
impact that these modified guanine lesions
have on mutations was determined using a
polymerase stop assay. Significant levels of
G→T transversions and polymerase stops
were observed.

Materials and Methods
Cr(V) Synthesis

N,N´-ethylenebis(salicylidene-animato)
oxochromium(V), or Cr(V)-Salen was syn-
thesized in the trivalent oxidation state as the
hexafluorophosphate salt, followed by oxida-
tion to the pentavalent form with iodosylben-
zene (17). The structure was confirmed by
UV-visible spectroscopy and electron spin
resonance spectroscopy.

Cr(V) Reactions with DNA
Unmodified oligonucleotides used for this
study were synthesized using standard auto-
mated solid-state methods. The 8-oxo-G con-
taining oligonucleotide was synthesized by
Trilink Biotechnology Inc. (San Diego, CA,
USA). Oligonucleotides used in these studies
were based on the 25-mer oligo sequence
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5´-d[ATGGCGTAATCATXGTCATAGCT
GT]-3´, where X at position G14 is either
8-oxo-G or the unmodified G base.
Purification of the oligonucleotides prior to
reaction and after oxidation with Cr(V)-Salen
was accomplished by high-performance liquid
chromatography (HPLC) using a Dionex
Nucleopac PA-100 4 × 250-mm anion-
exchange column (Dionex Corp., Sunnyvale,
CA, USA).

Reactions between 50–250 µM Cr(V)-
Salen and 10–100 µM oligonucleotide were
carried out in 10 mM sodium phosphate
buffer (pH 6.0–7.0) in 100-µL volumes.
Reactions were allowed to proceed at room
temperature for 30 min prior to analysis.
Residual chromium was removed from the
reaction mixtures using a Nensorb-20 DNA
purification cartridge (NEN Life Science
Products Inc., Boston, MA, USA). The
DNA-containing fraction was evaporated to
dryness and loaded on a 20%, 0.4-mm thick-
ness, 21 cm × 50 cm denaturing (7 M urea)
polyacrylamide gel with 4 µL 80% for-
mamide loading buffer containing 0.05%
xylene cyanol and bromophenol blue.
Alkaline-labile cleavage sites on the DNA
were analyzed by treating lyophilized samples
of the reaction mixture with 100 µL of a 1.0
M solution of freshly prepared piperidine fol-
lowed by heating at 90°C for 30 min.
Electrophoresis was carried out at 2,200 V
and 24 milliamps, with 1× Tris:boric
acid:EDTA as the running buffer.
Visualization of the DNA cleavage products
was performed using autoradiography. 

DNA Oxidation Product Analysis 
by Electrospray Ionization Mass
Spectrometry
DNA oxidation products from the reaction
with Cr(V)-Salen were purified by HPLC,
resuspended in an aqueous buffer containing
2.5 mM imidazole and 2.5 mM piperidine,
and analyzed by electrospray ionization mass
spectrometry (ESI–MS). ESI–MS spectra
were obtained on a Micromass Quattro II
tandem mass spectrometer (Micromass UK
Ltd., Manchester, UK). The oligomers were
introduced into a QTOF (quadrapole time of
flight) mass spectrometer by direct infusion
via a syringe pump at a flow rate of 5 µL/min.
The capillary voltage was set to –2,200 volts,
and ion signals were detected in the negative
ion mode. The initial spectra were charge-
state deconvoluted using the transform algo-
rithm featured in the Micromass MassLynx v.
3.4 software package (Micromass). 

Primer Extension Mutation Assay
Modified oligo (template) with sequence
5´-d[TCATGGGTCXTCGGTATATCAG
TGCTATCACATTAGTGTA]-3´ containing
an 8-oxo-G at position X was reacted with

50 µM Cr(V)-Salen as described above. The
primer extension assay was run directly after
removal of chromium through a NENSORB
purification cartridge, or the products of the
oxidation were separated and purified by
HPLC as discussed above. The modified
oligonucleotide was lyophilized to dryness and
redissolved in 10 µL 10.0 mM Tris-HCl (pH
7.5) containing 5.0 mM MgCl2 and 7.5 mM
dithiothreitol. A 5´-32P-labeled primer with
the template complementary sequence of
5´-d[TGATAGCACTGATATACCGA]-3´
was added at a template/primer ratio of 9:1
and annealed by heating to 90°C for 5 min,
followed by slow cooling to room temperature
over 2.5 hr. DNA extension was initiated by
the addition of 0.1 U of exo– Klenow fragment
and either 100 µM of the individual deoxynu-
cleoside triphosphates (dNTP) or 100 µM of a
mixture of all four dNTPs. The reaction was
incubated for 20 min at 37°C prior to reaction
termination by addition of 10 µL loading
buffer, and electrophoretic analysis was carried
out on a denaturing 15% polyacrylamide gel.
Visualization was by autoradiography as
described above.

Results

Reaction of Cr(V) with Unmodified
Oligonucleotides

Reaction of the model Cr(V) complex Cr(V)-
Salen with a synthetic oligonucleotide resulted
in oxidation at each guanine residue within
the strand to yield piperidine-labile strand
breaks (Figure 1; lane 4). Neither the Cr(III)-
Salen nor the oxidant iodosylbenzene showed
appreciable strand cleavage under these condi-
tions (Figure 1; lanes 2, 3). Posttreatment of
the Cr(V)-Salen–oxidized oligonucleotide
with Ir(IV) (Figure 1; lane 6), an 8-oxo-
G–specific oxidant, did not show an increase
in the level of strand breaks, suggesting that
base modification induced by Cr(V)-Salen
was not the 8-oxo-G moiety. 8-oxo-G is
poorly piperidine labile (18) but is thermody-
namically labile toward further oxidation (19).
The oxidation potential of guanine is 1.29 V
versus the normal hydrogen electrode, whereas
that of the 8-oxo-G–modified base has an oxi-
dation potential of 0.64 V (19). The failure of
Ir(IV) posttreatment to increase piperidine
lability suggested that any 8-oxo-G formed
during the reaction had been further oxidized
to a fully piperidine-labile lesion. The use of
unmodified DNA to observe base lesions
derived from Cr(V)-Salen treatment generated
relatively low levels of oxidized guanine prod-
ucts and lacked site specificity. These two
drawbacks made the system refractory to con-
ventional analytical methods for elucidation of
the oxidized lesions formed in this system. We
have circumvented these problems of low
reactivity and site specificity by reacting the

Cr(V)-Salen complex with an oligonucleotide
incorporating the oxidatively labile 8-oxo-G
group, the putative intermediate in the forma-
tion of further oxidized guanine lesions.

Reaction of Cr(V) with 8-Oxo-G–
Modified Oligonucleotides
Reaction of Cr(V)-Salen was carried out with a
modified oligonucleotide identical to that used
in Figure 1, with the exception that the gua-
nine at position 14 was substituted with an 8-
oxo-G. The reaction was carried out with
50–250 µM Cr(V)-Salen and yielded base-spe-
cific oxidation at the site of modification on
the DNA (Figure 2; lanes 2–4). This was in
contrast to the unmodified strand, where oxi-
dation at each guanine residue was observed.
The 8-oxo-G–specific oxidant Ir(IV) showed
the expected base-specific reaction (Figure 2;
lane 5). The Cr(III)-Salen and iodosylbenzene
controls showed no increased oxidation of the
8-oxo-G–containing oligonucleotide (Figure 2;
lanes 7,8). Significantly higher levels of oxida-
tion were observed for the modified oligonu-
cleotide (8-oxo-G containing) versus the
unmodified oligonucleotide. The high product
yield and site specificity obtained with the
modified oligonucleotide was necessary to
allow lesion identification and determination
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Figure 1. Autoradiogram of the piperidine-treated
25 base-pair oligonucleotide 5′-d[ATGGCGTAAT-
CATGGTCATAGCTGT]-3′ showing guanine-specific
oxidation with Cr(V)-Salen treatment. Lane 1: 10 µM
DNA; lane 2: 10 µM DNA + 100 µM Cr(III)-Salen;
lane 3: 10 µM DNA + 100 µM iodosylbenzene; lane
4: 10 µM DNA + 100 µM Cr(V)-Salen; lane 5:
Maxam-Gilbert guanine/adenosine (G/A) lane; lane
6: 10 µM DNA + 250 µM Na2IrCl6. Reproduced with
permission from Sugden et al. (12) with permission
of the American Chemical Society.
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of mutations using an in vitro polymerase mis-
incorporation assay.

Identification of Oxidized Lesions 
in DNA Derived from Cr(V)-Salen
Treatment
The reaction products derived from Cr(V)-
Salen oxidation of the 8-oxo-G–containing
oligo were separated using anion exchange
HPLC (data not shown). Peaks of four major
products were observed, and each peak was
purified and analyzed by ESI–MS (Figure 3).
Peak 3 co-eluted on the HPLC with unre-
acted oligo and gave an identical mass to
charge ratio (m/z = 7,727 amu) as that of the

control oligo. Peaks 1 and 2 gave identical
M – 10 mass shifts from the unreacted oligo,
with m/z = 7,717 amu. This 10-amu mass
shift for peaks 1 and 2 has been identified as
GH and its isomer iminoallantoin (IA) (20).
These two isomers readily interconvert, and
at this time it is not possible to determine
which isomer corresponds to which peak.
Peak 4 yielded a M + 16 mass shift (m/z =
7,743 amu) from that of the unreacted oligo
and has been identified as the further oxi-
dized guanine base-product SH (20). All
product assignments were based on previous
reactions with the 8-oxo-G nucleoside (data
not shown), characteristic mass shifts, and
literature precedent. 

Polymerase Arrest and Base
Misincorporation opposite 
Oxidized Lesions
Mutational analysis of Cr(V)-Salen–treated
oligonucleotides was carried out using a
primer extension assay and the exo– Klenow

fragment polymerase. Primer extension using
the 8-oxo-G–modified template and all four
dNTPs without Cr(V)-Salen treatment par-
tially arrested the DNA polymerase, although
a significant amount of full-length template
was formed (Figure 4; lane 2). When the
primer extension assay was carried out in the
presence of only one of the dNTPs, misincor-
poration of adenine occurred as well as incor-
poration of the correct base cytosine (Figure
4; lanes 4, 5). After Cr(V)-Salen treatment of
the template, complete polymerase arrest was
observed with all four dNTPs present (Figure
4; lane 7). A relative increase in the misincor-
poration of adenine over cytosine was also
observed (Figure 4; lanes 9, 10). When the
oxidized species detected by ESI–MS shown
in Figure 3 were purified by HPLC and
assayed for base misincorporation, a nearly
complete misincorporation of the base ade-
nine was observed opposite the SH and
GH/IA lesions (data not shown). 

Discussion
Until recently, the primary lesion thought to
result from oxidation of guanine was 8-oxo-
G. It is becoming clear that the oxidation
properties that make 8-oxo-G amenable to
observation by electrochemical detection also
make this species prone to degradation into
further oxidized products. A variety of further
oxidized species of 8-oxo-G have been
observed from treatment with different oxi-
dizing agents. These include oxazolone, imi-
dazolone, and cyanuric acid (21,22), as well
as the oxidized species observed in this study
[guanidinohydantoin/iminoallantoin and
spiroiminodihydantoin (20)] (Figure 5). 

With few exceptions, exposure of cellular
systems to Cr(VI) have failed to show forma-
tion of the classical biomarker of oxidative
damage, 8-oxo-G. These data show that a bet-
ter biomarker for base oxidation induced by
Cr(VI) may be these further oxidized guanine
products. At present, no reliable cellular assay
for these products exist to test this hypothesis. 

Predominant mutations observed in a
variety of different cellular systems after
Cr(VI) exposure have been G→T transver-
sions (23,24). These data show that the G→T
transversion mutations may be accounted for
by the formation of these further oxidized
guanine lesions. It should be noted, however,
that other lesions form G→T transversion
mutations, including 8-oxo-G demonstrated
in this study and a variety of bulky adducts.
The induction of polymerase arrest upon cel-
lular treatment with Cr(VI) was demonstrated
previously (15). Polymerase arrest in this sys-
tem has normally been attributed to adducted
chromium. These data show that induction of
polymerase arrest may also be attributable to
the formation of these further oxidized
guanine lesions.
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Figure 2. Autoradiogram of the piperidine-treated,
25 base-pair 8-oxo-G, X, modified oligonucleotide
5′-d[ATGGCGTAATCATXGTCATAGCTGT]-3′ show-
ing specific oxidation at G14 after Cr(V)-Salen treat-
ment. Lane 1: 10 µM DNA; lane 2: 10 µM DNA + 50
µM Cr(V)-Salen; lane 3: 10 µM DNA + 100 µM Cr(V)-
Salen; lane 4: 10 µM DNA + 250 µM Cr(V)-Salen;
lane 5: 10 µM DNA + 250 µM Na2IrCl6; lane 6:
Maxam-Gilbert G/A lane; lane 7: 10 µM DNA + 100
µM iodosylbenzene; lane 8: 10 µM DNA + 100 µM
Cr(III)-Salen.
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Figure 3. ESI–MS spectra of products formed from
the reaction of the 8-oxo-G–containing oligo with
Cr(V)-Salen.
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Figure 4. Autoradiogram of the primer extension
assay carried out using the exo– Klenow fragment
on 8-oxo-G–modified DNA (lanes 1–6) and Cr(V)-
Salen–treated 8-oxo-G–modified DNA (lanes 7–11).
Lane 1: primer control; lane 2: DNA template with all
four deoxynucleoside triphosphates; lane 3: DNA
template + deoxyguanosine triphosphate; lane 4:
DNA template + deoxycytidine triphosphate; lane 5:
DNA template + deoxyadenosine triphosphate; lane
6: DNA template + thymidine triphosphate; lane 7:
DNA template + deoxynucleoside triphosphate mix;
lane 8: DNA template deoxyguanosine triphosphate;
lane 9: DNA template + deoxycytidine triphosphate;
lane 10: DNA template + deoxyadenosine triphos-
phate; lane 11: DNA template + thymidine triphos-
phate. Reproduced from Sugden et al. (12), with
permission of the American Chemical Society.
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Figure 5. Structures of the oxidized guanine
lesions.



The use of Cr(V)-Salen as a model for
the activated form of chromium upon cellu-
lar internalization has demonstrated many of
the hallmarks of oxidative DNA damage
attributed to Cr(VI) exposure in cells. These
results are significant in that they show the
first guanine-specific lesions generated by the
direct interaction of chromium with DNA
without addition of exogenous oxidant. We
believe these studies may help to a) define
the mechanisms of DNA damage that lead to
cancer upon Cr(VI) exposure, and b) reveal
novel biomarkers to assess Cr(VI) exposure
in cellular systems. 
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